

Fakultät Chemie und Lebensmittelchemie Inez Weidinger

(Foto)-Elektrokatalytische Erzeugung von Brennstoffen und Chemikalien

9. INNOVATIONSKONGRESS CHEMIE 31.05.2023

Chair of Electrochemistry

Technische Universität Dresden

Electrocatalytic Reactions

Nature as Inspiration

HER $2e^- + 2H^+ \rightarrow H_2$

ORR

 $0_2 + 4e^- + 4H^+ \rightarrow 2H_2O$

Cooperation with M. Schwalbe, Utrecht Univ.

Cooperation with M. Schwalbe, Utrecht Univ.

Raman Spectroelectrochemistry

For a review see Ly & Weidinger

Chem. Commun **2021**, 57, 2328-2342

C₂N Materials for Reduction of Nitrogen

$N_2 + 6e^- + 6H^+ \rightarrow 2NH_3$

Cooperation with M. Oschatz, Univ. Jena

DRESDEN

-X-FE

-0.5 -0.6 -0.7 -0.8 -0.9 -1.0 Potential (V vs. RHE)

NH₃ yield

h⁻¹)

HH₃ yield (μg mg⁻¹

C₂N Materials for Reduction of Nitrogen

$N_2 + 6e^- + 6H^+ \rightarrow 2NH_3$

C₂N Materials for Reduction of Nitrogen

$N_2 + 6e^- + 6H^+ \rightarrow 2NH_3$

Scenarios for catalyst activation:

No major reaction of the nitrile groups or structural changes of the C_2N matrix Shift of electron density from the nitrile groups to the active site Changes in the electrochemical double layer

Photo-Electrocatalysis by Acethylenic Polymers

Cooperation with X. Feng, TU Dresden

Photo-Electrocatalysis by Acethylenic Polymers

Best HER in neutral conditions

Best HER in alkaline conditions

Bifunctional HER and OER catalyst

Only CAP that performs NRR

Photo-Electrocatalysis by Acetylenic Polymers

Halil Öner PhD

Folie 16

Photo-Electrocatalysis by Acetylenic Polymers

DRESDE

concep

TECHNISCHE UNIVERSITÄT DRESDEN

Mino Borrelli PhD

Folie 17

Photo-Electrocatalysis by Acetylenic Polymers

HER (neutral): 2 e⁻ + 2H⁺ \rightarrow H₂ OER (alkaline): 4OH⁻ \rightarrow 2H₂O + 4e⁻ + O₂

Photo-Electrocatalysis by Acetylenic Polymers HER: $2e^{-} + 2H^{+} \rightarrow H_{2}$ NRR: $N_2 + 6e^- + 6H^+ \rightarrow 2NH_3$ pDT 514 nm Fe Fe S ⁺H− 594 nm S Current Density / mA cm⁻² 0.5 640 nm Ar Fe 0.0 N₂ 800 1000 1200 1400 1600 1800 2000 2200 2400 600 Nitrogenase -0.5 Raman shift / cm⁻¹ .0 light off light on .5 $h_{ m V_{594\,nm}}$ 0.0 0.2 0.3 0.4 0.5 0.1 2111 E / V versus RHE

Thanks

AK Electrochemistry

Khoa Ly Philipp Wollmann Antje Völkel Markus Göbel Anna Maria Dominik Anthony Ramuglia Fanny Reichmayr Linda Feuerstein **Christian Krumbiegel** Stefan Röher

Mino Borelli Matthias Werheid Andrea Göpfert Hussam Alchaar Phong Ly Alumni Fabian Kruse Robert Götz Patrycja Kielb Halil Öner

Xinliang Feng (TU Dresden) Renhao Dong (TU Dresden) Stefan Kaskel (TU Dresden) Agnieszka Kuc (HZDR) Martin Oschatz (Univ. Jena) Joachim Heberle (FU Berlin) Matthias Schwalbe (Utrecht Univ.) Maria Andrea Mroginski (TU Berlin) Petkow Petko (Univ. Sofia) Christin David (Univ. Jena)

DFG

Cooperation with M. Schwalbe, Utrecht Univ.

